Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38063706

RESUMO

Copper-based electrocatalytic materials play a critical role in various electrocatalytic processes, including the electroreduction of carbon dioxide and nitrate. Three-dimensional nanostructured electrodes are particularly advantageous for electrocatalytic applications due to their large surface area, which facilitates charge transfer and mass transport. However, the real surface area (RSA) of electrocatalysts is a crucial parameter that is often overlooked in experimental studies of high-surface-area copper electrodes. In this study, we investigate the roughness factors of electrodeposited copper foams with varying thicknesses and morphologies, obtained using the hydrogen bubble dynamic template technique. Underpotential deposition (UPD) of metal adatoms is one of the most reliable methods for estimating the RSA of highly dispersed catalysts. We aim to illustrate the applicability of UPD of lead for the determination of the RSA of copper deposits with hierarchical porosity. To find the appropriate experimental conditions that allow for efficient minimization of the limitations related to the slow diffusion of lead ions in the pores of the material and background currents of the reduction of traces of oxygen, we explore the effect of lead ion concentration, stirring rate, scan rate, monolayer deposition time and solution pH on the accuracy of RSA estimates. Under the optimized measurement conditions, Pb UPD allowed to estimate roughness factors as high as 400 for 100 µm thick foams, which translates into a specific surface area of ~6 m2·g-1. The proposed measurement protocol may be further applied to estimate the RSA of copper deposits with similar or higher roughness.

2.
Nanomaterials (Basel) ; 13(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063761

RESUMO

The pursuit of novel techniques for obtaining dispersed copper-based catalysts is crucial in addressing environmental issues like decarbonization. One method for producing nanostructured metals involves the reduction of their oxides, a technique that has found widespread use in CO2 electroreduction. Currently, the intrinsic activities of oxide-derived copper electrocatalysts produced via different routes cannot be compared effectively due to the lack of information on electrochemically active surface area values, despite the availability of electrochemical methods that enable estimation of surface roughness for highly dispersed copper coatings. In this study, we aim to explore the potential of oxide-derived copper to achieve a high electrochemically active surface area by examining samples obtained from acetic and lactic acid deposition solutions. Our results revealed that Cu2O oxides had distinct morphologies depending on the electrodeposition solution used; acetate series samples were dense films with a columnar structure, while electrodeposition from lactic acid yielded a fine-grained, porous coating. The roughness factors of the electroreduced films followed linear relationships with the deposition charge, with significantly different slopes between the two solutions. Notably, a high roughness factor of 650 was achieved for samples deposited from lactic acid solution, which represents one of the highest estimates of electrochemically active surface area for oxide-derived copper catalysts. Our results highlight the importance of controlling the microstructure of the electrodeposited oxide electrocatalysts to maximize surface roughness.

3.
Nanomaterials (Basel) ; 12(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500950

RESUMO

Perovskite-type lanthanum iron oxide, LaFeO3, is a promising photocathode material that can achieve water splitting under visible light. However, the performance of this photoelectrode material is limited by significant electron-hole recombination. In this work, we explore different strategies to optimize the activity of a nanostructured porous LaFeO3 film, which demonstrates enhanced photoelectrocatalytic activity due to the reduced diffusion length of the charge carriers. We found that surface passivation is not an efficient approach for enhancing the photoelectrochemical performance of LaFeO3, as it is sufficiently stable under photoelectrocatalytic conditions. Instead, the deposition of a Pt co-catalyst was shown to be essential for maximizing the photoelectrochemical activity both in hydrogen evolution and oxygen reduction reactions. Illumination-induced band edge unpinning was found to be a major challenge for the further development of LaFeO3 photocathodes for water-splitting applications.

4.
Nanomaterials (Basel) ; 12(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432380

RESUMO

Arrays of superconducting nanowires may be useful as elements of novel nanoelectronic devices. The superconducting properties of nanowires differ significantly from the properties of bulk structures. For instance, different vortex configurations of the magnetic field have previously been predicted for nanowires with different diameters. In the present study, arrays of parallel superconducting In nanowires with the diameters of 45 nm, 200 nm, and 550 nm-the same order of magnitude as coherence length ξ-were fabricated by templated electrodeposition. Values of magnetic moment M of the samples were measured as a function of magnetic field H and temperature T in axial and transverse fields. M(H) curves for the arrays of nanowires with 45 nm and 200 nm diameters are reversible, whereas magnetization curves for the array of nanowires with 550 nm diameter have several feature points and show a significant difference between increasing and decreasing field branches. Critical fields increase with a decrease in diameter, and the thinnest nanowires exceed bulk critical fields by 20 times. The qualitative change indicates that magnetic field configurations are different in the nanowires with different diameters. Variation of M(H) slope in small fields, heat capacity, and the magnetic field penetration depth with the temperature were measured. Superconductivity in In nanowires is proven to exist above the bulk critical temperature.

5.
J Phys Chem Lett ; 13(14): 3165-3172, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35373560

RESUMO

The superior rate capabilities of metal ion battery materials based on Prussian blue analogues (PBAs) are almost exclusively ascribed to the extremely fast solid-state ionic diffusion, which is possible due to structural voids and spacious three-dimensional channels in PBA structures. We performed a detailed electroanalytical study of alkali ion diffusivities in nanosized cation-rich and cation-poor PBAs obtained as particles or electrodeposited films in both aqueous and non-aqueous media, which resulted in a solid conclusion about the exceptionally slow ionic transport. We show that the impressive rate capability of PBA materials is determined solely by the small size of the primary particles of PBAs, while the apparent diffusion coefficients are 3-5 orders of magnitude lower than those reported in earlier studies. Our finding calls for a reconsideration of the apparent facility of ionic transport in PBA materials and deeper analysis of the charge carrier-host interactions in PBAs.

6.
Carbohydr Polym ; 258: 117614, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33593532

RESUMO

The functionalization of the bacterial cellulose (BC) surface with a chitosan biopolymer to expand the areas of possible applications of the modified BC is an important scientific task. The creation of such composites in the carbonic acid solutions that were performed in this work has several advantages in terms of being biocompatible and eco-friendly. Quantitative analysis of chitosan content in the composite was conducted by tritium-labeled chitosan radioactivity detection method and this showed three times increased chitosan loading. Different physicochemical methods showed successful incorporation of chitosan into the BC matrix and interaction with it through hydrogen bonds. Microscopy results showed that the chitosan coating with a thickness of around 10 nm was formed in the bulk of BC, covering each microfibril. It was found that the inner specific surface area increased 1.5 times on deposition of chitosan from the solutions in carbonic acid.


Assuntos
Bactérias/metabolismo , Dióxido de Carbono/química , Ácido Carbônico/química , Celulose/química , Quitosana/química , Materiais Biocompatíveis/química , Biopolímeros/química , Química Verde , Microscopia Eletrônica de Varredura , Nanopartículas/química , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Engenharia Tecidual/métodos , Trítio/química , Difração de Raios X
7.
ChemSusChem ; 14(6): 1574-1585, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33512766

RESUMO

Prussian blue analogues (PBAs) are commonly believed to reversibly insert divalent ions, such as calcium and magnesium, rendering them as perspective cathode materials for aqueous magnesium-ion batteries. In this study, the occurrence of Mg2+ insertion into nanosized PBA materials is shown to be a misconception and conclusive evidence is provided for the unfeasibility of this process for both cation-rich and cation-poor nickel, iron, and copper hexacyanoferrates. Based on structural, electrochemical, IR spectroscopy, and quartz crystal microbalance data, the charge compensation of PBA redox can be attributed to protons rather than to divalent ions in aqueous Mg2+ solution. The reversible insertion of protons involves complex lattice water rearrangements, whereas the presence of Mg2+ ion and Mg salt anion stabilizes the proton (de)insertion reaction through local pH effects and anion adsorption at the PBA surface. The obtained results draw attention to the design of proton-based batteries operating in environmentally benign aqueous solutions with low acidity.

8.
Phys Chem Chem Phys ; 22(26): 14953-14964, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32588006

RESUMO

Electrochemical aspects of Bi electrocrystallization from a bath containing bismuth nitrate in a mixture of ethylene glycol and water are addressed. Bismuth nanowires with diameters of 50-120 nm and a length of up to a few dozen microns were prepared by electrodeposition into the pores of anodic aluminium oxide templates. Crystal structure and morphology of electrodeposited materials were characterized using electron microscopy, selected area electron diffraction, and X-ray diffraction analysis. Factors affecting the formation of single or polycrystalline nanowires and their crystallographic orientation are discussed. The prospects of electrodeposited Bi nanostructures for microelectronics are illustrated by the quantitative resistivity measurements of highly texturized Bi nanowires with a diameter of ca. 100 nm and a length varying from 160 to 990 nm in a temperature range from 300 to 1.2 K.

9.
J Phys Chem Lett ; 4(8): 1298-303, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26282143

RESUMO

Disorder in conjugated polymers is a general drawback that limits their use in organic electronics. We show that an archetypical conjugated polymer, MEH-PPV, enhances its local structural and electronic order upon addition of an electronic acceptor, trinitrofluorenone (TNF). First, acceptor addition in MEH-PPV results in a highly structured XRD pattern characteristic for semicrystalline conjugated polymers. Second, the surface roughness of the MEH-PPV films increases upon small acceptor addition, implying formation of crystalline nanodomains. Third, the low-frequency Raman features of the polymer are narrowed upon TNF addition and indicate decreased inhomogeneous broadening. Finally, the photoinduced absorption and surface photovoltage spectroscopy data show that photoexcited and dark polymer intragap electronic states assigned to deep defects disappear in the blend. We relate the enhanced order to formation of a charge-transfer complex between MEH-PPV and TNF in the electronic ground state. These findings may be of high importance to control structural properties as they demonstrate an approach to increasing the order of a conjugated polymer by using an acceptor additive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...